Fluorite
- Chemistry: CaF2, Calcium Fluoride
- Class: Halides
- Uses: As a flux (hence the name) in iron smelting, a rare gemstone,
a source of fluorine, as special optical lenses and a popular mineral
specimen.
Fluorite is a mineral with a veritable bouquet of brilliant
colors. Fluorite is well known and prized for its glassy luster and rich
variety of colors. The range of common colors for fluorite starting from the
hallmark color purple, then blue, green, yellow, colorless, brown, pink, black
and reddish orange is amazing and is only rivaled in color range by quartz.
Intermediate pastels between the previously mentioned colors are also possible.
It is easy to see why fluorite earns the reputation as "The Most
Colorful Mineral in the World".
The many colors of fluorite are truly wonderful. The rich
purple color is by far fluorite's most famous and popular color. It easily
competes with the beautiful purple of amethyst. Often specimens of fluorite and
amethyst with similar shades of purple are used in mineral identification
classes to illustrate the folly of using color as the sole means to identify
minerals.
The blue, green and yellow varieties of fluorite are also
deeply colored, popular and attractive. The colorless variety is not as well
received as the colored varieties, but their rarity still makes them sought
after by collectors. A brown variety found in Ohio and elsewhere has a
distinctive iridescence that improves an otherwise poor color for fluorite. The
rarer colors of pink, reddish orange (rose) and even black are usually very
attractive and in demand.
Most specimens of fluorite have a single color, but a
significant percentage of fluorites have multiple colors and the colors are
arranged in bands or zones that correspond to the shapes of fluorite's crystals.
In other words, the typical habit of fluorite is a cube and the color zones are
often in cubic arrangement. The effect is similar to phantomed crystals that
appear to have crystals within crystals that are of differing colors. A fluorite
crystal could have a clear outer zone allowing a cube of purple fluorite to be
seen inside. Sometimes the less common habits such as a colored octahedron are
seen inside of a colorless cube. One crystal of fluorite could potentially have
four or five different color zones or bands.
To top it all off, fluorite is frequently fluorescent and,
like its normal light colors, its fluorescent colors are extremely
variable. Typically it fluoresces blue but other fluorescent colors include
yellow, green, red, white and purple. Some specimens have the added effect of simultaneously
having a different color under longwave UV light from its color under shortwave
UV light. And some will even demonstrate phosphorescence in a third color!
That's four possible color luminescence in one specimen! If you count the normal
light color too. The blue fluorescence has been attributed to the presence of
europium ions (Eu +2). Yttrium is the
activator for the yellow fluorescence. Green and red fluorescent activation is
not exactly pinned down as of yet, but may be due to the elements already
mentioned as well as other rare earth metals; also manganese, uranium or a
combination of these. Even unbonded fluorine trapped in the structure has been
suggested. The word fluorescent was derived from fluorite since specimens of
fluorite were some of the first fluorescent specimens ever studied. The naming
followed the naming precedence set by opalescence from opal; ergo fluorescence
from fluorite.
Another unique luminescent property of fluorite is its
thermoluminescence. Thermoluminescence is the ability to glow when
heated. Not all fluorites do this, in fact it is quite a rare phenomenon. A
variety of fluorite known as "chlorophane" can demonstrate this
property very well and will even thermoluminesce while the specimen is held in a
person's hand activated by the person's own body heat (of course in a dark room,
as it is not bright enough to be seen in daylight). The thermoluminescence is
green to blue-green and can be produced on the coils of a heater or electric
stove top. Once seen, the glow will fade away and can no longer by seen in the
same specimen again. It is a one shot deal. Chlorophane (which means to show
green) is found in very limited quantities at Amelia Court House, Virginia;
Franklin, New Jersey and the Bluebird Mine, Arizona, USA; Gilgit,
Pakistan; Mont Saint-Hilaire,
Quebec, Canada and at Nerchinsk in the Ural Mountains, Russia.
Fluorite has other qualities besides its great color
assortments that make it a popular mineral. It has several different crystal
habits that always produce well formed, good, clean crystals. The cube is by far
the most recognized habit of fluorite followed by the octahedron which is
believed to form at higher temperatures than the cube. Although the cleavage of
fluorite can produce an octahedral shape and these cleaved octahedrons are
popular in rock shops the world over, the natural (e.g. uncleaved) octahedrons
are harder to find.
A rarer habit variety is the twelve sided dodecahedron,
however, it is never seen by itself and usually modifies the cubic crystals by
replacing the edges of the cube with one flat face of a dodecahedron. The
tetrahexahedron is a twenty four sided habit that is also seen modifying the
cubic habit. But instead of one face replacing each cubic edge, two faces modify
the cube's edges. Occasionally combinations of a cube, dodecahedron and
tetrahexahedron are seen producing an overall cubic crystal with no less that
three minor parallel faces replacing each cubic edge. A fifth form is the
hexoctahedron which modifies the cube by placing six very minor faces at each
corner of the cube. Twinning is also common in fluorite and symmetrical
penetration twins, especially from Cumberland England are much sought after by
collectors.
Fluorite, as mention above, has octahedral cleavage. This
means that it has four identical directions of cleavage and when cleaved in the
right ways can produce a perfect octahedral shape. Many thousands of octahedrons
are produced from massive or large undesirable crystals of fluorite (hopefully!)
and are sold in rock shops and museum gift shops at a small cost. Fluorite mine
workers are reported to sit down at lunch breaks and cleave the octahedrons for
the extra cash. The octahedrons are very popular due to their attractive colors,
clarity, "diamond-shaped" and low costs, but to a serious
collector they are nothing more than "cleavage fragments".
Fluorite not only is attractive in its own right but is often
associated with other attractive minerals. Fluorite crystals will frequently
accompany specimens of silver gray galena, brassy yellow pyrite, chalcopyrite or
marcasite, golden barite, black sparkling sphalerite, intricately crystallized
calcite and crystal clear quartz, even amethyst.
The origin of the word fluorite comes from the use of fluorite
as a flux in steel and aluminum processing. It was originally referred to as fluorospar
by miners and is still called that today. Fluorite is also used as a source of
fluorine for hydrofluoric acid and fluorinated water. The element fluorine also
gets its name from fluorite, fluorines only common mineral. Other uses of
fluorite include an uncommon use as a gemstone (low hardness and good cleavage
reduce its desirability as a gemstone), ornamental carvings (sometimes
misleadingly called Green Quartz) and special optical uses.
Fluorite is the most popular mineral for mineral collectors
in the world, second only to quartz. Every mineral collection owned by even the
newest and youngest of mineral collectors must have a specimen of fluorite.
Fluorite is by far one of the most beautiful and interesting minerals available
on the mineral markets.
THE PHYSICAL CHARACTERISTICS OF FLUORITE:
- Color is extremely variable and many times can be an intense
purple, blue, green or yellow; also colorless, reddish orange, pink, white
and brown. A single crystal can be multi-colored.
- Luster is vitreous.
- Transparency: Crystals are transparent to translucent.
- Crystal System: Isometric; 4/m bar 3 2/m
- Crystal Habits include the typical cube and to a lesser extent, the
octahedron as well as combinations of these two and other rarer isometric
habits. Always with equant crystals; less common are crusts and botryoidal
forms. Twinning also produces penetration twins that look like two cubes
grown together.
- Cleavage is perfect in 4 directions forming octahedrons.
- Fracture is irregular and brittle.
- Hardness is 4
- Specific Gravity is 3.1+ (average)
- Streak is white.
- Other Characteristics: Often fluorescent blue or more rarely green,
white, red or violet and may be thermoluminescent, phosphorescent and
triboluminescent.
- Associated Minerals are many and include calcite, quartz, willemite,
barite, witherite, apatite, chalcopyrite, galena, sphalerite, pyrite, and
other sulfides.
- Notable Occurrences include in addition to those mentioned above
Cumberland, England; Spain; China; Brazil; Morocco; Bancroft, Ontario,
Canada; Naica, Chihuahua, Mexico; Germany; Elmwood, Tennessee;
Rosiclare, Illinois; Fort Wayne, Indiana; Pugh Quarry and Wood County, Ohio;
Nancy Hanks Mine, Colorado and many other USA localities as well as many
other localities from around the world.
- Best Field Indicators are crystal habit, color zoning, hardness
(harder than calcite, but softer than quartz or apatite), fluorescence and
especially the octahedral cleavage.
Serendipity
Ranch Gem Mine